اثرات متقابل سرب نیترات، سالیسیلیک اسید و بیوچار بر ویژگی‌های رشدی گیاه آویشن (Thymus vulgaris L.)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم و مهندسی خاک دانشگاه رازی

2 استادیار گروه علوم و مهندسی خاک دانشگاه رازی

3 دانشیار گروه زراعت و اصلاح نباتات دانشگاه رازی، کرمانشاه

چکیده

از روش­های نوین کاهش اثرات فلزات سنگین بر رشد گیاهان، کاربرد ترکیبات اصلاح­کننده در خاک است. بمنظور ارزیابی اثرات متقابل سرب نیترات، سالیسیلیک اسید و بیوچار بقایای کلزا بر بر ویژگی‌های رشدی گیاه دارویی آویشن (Thymus vulgaris L.)، آزمایشی به صورت فاکتوریل، در قالب طرح کاملا ً تصادفی با سه تکرار در شرایط گلخانه­ای انجام گرفت. فاکتورها شامل غلظت سرب در سه سطح (0، 150 و 300 میلی­گرم در کیلوگرم خاک به صورت سرب نیترات)، سالیسیلیک اسید در سه سطح (0، 150 و 300 میکرومولار) و بیوچار در سه سطح (0، 1 و 3 درصد وزنی) بودند. نتایج نشان داد که تنش سرب تمام ویژگی­های رشدی گیاه را کاهش داده اما تیمارهای سالیسیلیک اسید و بیوچار موجب تعدیل اثرات منفی سرب بر این خصوصیات گردید. اثر متقابل تیمارها بر ویژگی­های رشدی از قبیل وزن خشک شاخساره و حجم ریشه و نیز مقدار قندهای محلول، پرولین و سرب معنادار بود (01/0P <). بیش­ترین مقدار سرب (83/4 میلی­گرم بر کیلوگرم) و پرولین (8/37 میکرومول بر گرم) در تیمار 300 میلی­گرم بر کیلوگرم سرب و شاهد بیوچار و سالیسیلیک اسید به دست آمد. بطورکلی می­توان گفت که کاربرد همزمان سالیسیلیک اسید و بیوچار یک روش آسان، ارزان و موثر در راستای کاهش اثرات تنش سرب بر رشد گیاه آویشن است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Interactive Effects of Pb (NO3)2, Biochar and Salicylic acid on Growth Characteristics of Thyme (Thymus vulgaris L.)

نویسندگان [English]

  • B. Rezaei 1
  • A. Amirinejad 2
  • M. Ghobadi 3
1 MSc student, Department of Soil Science and Engineering, Razi University
2 Assistant professor, Department of soil Science and Engineering, Razi University
3 Associate professor, Department of Agronomy, Razi University
چکیده [English]

Introduction
Industrial development has resulted in higher soils pollution with heavy metals. Plants which are subjected to heavy metals may severely lose their yield capabilities. Applying improving compounds in the soil is a new method to reduce effects of heavy metals on plants growth. Biochar as a carbon rich source and salicylic acid as an important plant hormone, are two main compounds to alleviate heavy metals stresses in plants. These are the cost-effective and environmentally friendly substances for increasing the resistance of plants. Lead (Pb), as a common and extremely poisonous element in polluted soils, can be accumulated due to its non-biodegradability nature. When Pb content in plants reaches a toxic level, it can inhibit plant growth by reducing enzyme activities and photosynthesis and changing mineral nutrients balance. However, with regard to the program of expanding the area under cultivation of medicinal plants, including thyme, there is a possibility of contamination of soils in the vicinity of industrial centers and roads with lead. Therefore, the present study was conducted to evaluate the effects of salicylic acid as a plant growth stimulant and biochar made of rapeseed wastes, as a stable organic compound, on alleviation of Pb-induced stress in thyme (Thymus vulgaris L.).
 Materials and Methods
In order to investigate the effects of salicylic acid (SA) and biochar (BC) on reducing Pb stress in thyme (Thymus vulgaris L.), a factorial experiment was conducted based on a completely randomized design with three replications in the greenhouse of Razi University. The factors included Pb at three levels (0, 150, and 300 mg/kg as Pb(NO3)2), SA at three levels (0, 150, and 300 μM) and BC at three levels (0, 1 and 3% by weight). To apply the Pb treatments, the soil samples of each pot (8 kg) were sprayed with Pb(NO3)2 solutions, 4 weeks before planting, according to the contamination levels. Then, BC treatments were performed by mixing it with the soil samples. In each pot, four thyme seedlings were planted. At four-leaf stage, SA solutions were sprayed three times on foliage of the thyme plants , until the beginning of flowering. After harvesting, some characteristics of aerial and root parts of thyme, including soluble sugars and proline contents, plant height, dry weights of shoots and roots, root volume and root length were determined. All plant parameters were then averaged for each pot. Also, Pb concentrations in extracts obtained from digestion of leaf tissues, were measured by Varian AA220 atomic absorption spectrophotometer. The analysis of variance (ANOVA) and comparison of means (Duncan's multiple range test) were performed using SPSS-16 software.
Results and Discussion
The results revealed that Pb stress reduced all plant characteristics, such as plant height, root volume and root length, as well as, dry weights of shoots and roots, and elevated leaf Pb concentration, proline content and soluble sugars in thyme. However, BC application resulted in improvements in growth parameters. The positive effect of BC was further enhanced when SA was sprayed onto the foliage of the thyme plants. The interaction effects of SA, BC and Pb treatments on the growth parameters of thyme, i.e, shoot dry weight, root volume, Pb concentration, soluble sugars and proline contents were significant (P < 0.01). In other words, SA and BC treatments moderated the negative effects of Pb on the growth traits. The highest Pb concentration (4.83 mg) and proline content (37.8 μmol/g) were obtained in 300 μg/kg of Pb, and SA and BC controls. Also, the highest concentration of soluble sugars (0.46 mg/kg) was found at 300 mg/kg of Pb, 300 μM SA and BC control.
Conclusion
Our results indicated the positive effects of SA and BC treatments on the growth parameters, such as; shoot and root dry weights in thyme plants, especially under Pb stress. In other words, Pb stress, while reducing all growth characteristics, increased proline content and soluble sugars in thyme. In general, it seems that under Pb stress, treatment of thyme with SA (as a plant growth regulator) and BC (as an organic matter with high viability in the soil) is a simple and appropriate method in order to increase the plant's resistance and reduce the effects of Pb toxicity on the overall growth of thyme.

کلیدواژه‌ها [English]

  • Growth characteristics
  • Heavy metals
  • Soil improving compounds
  1. Ahmad M., Lee S., Dou X., Mohan D., Sung J., Yang J.E., and Ok Y.S. 2012. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology 118: 536-544. http://dx.doi.org/10.1016/j.biortech.2012.05.042.

    1. Aldoobie N.F., and Beltagi M.S. 2013. Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. African Journal of Biotechnology 12(29): 4614-4622. https://doi.org/10.36808/if/2019/v145i2/144288.
    2. Allison L.E., and Moodie C.D. 1965. Carbonate, Black Methods of soil analyses. P 1379-1396.
    3. Barraza F., Montero V., Wong-Benito H., Valenzuela C., Godoy-Guzmán F., Guzmán B., Köllner T., Wang C.J., Secombes and Maisey K. 2021. Revisiting the teleost thymus: Current knowledge and future perspectives. Biology 10: 8-18. https://doi.org/10.3390/biology10010008.
    4. Bates L.S., Waldren R.P., and Teare I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 29: 205-207. http://dx.doi.org/10.1007/BF00018060.
    5. Biria,M., Moezzi A., and Amirikhah H. 2016. Effect of Sugarcane bagasse biochar on maize plant growth, grown in lead and cadmium contaminated soils. Journal of Water and Soil 31(2): 609-626.
    6. 7. Bouyoucos C.J. 1962. Hydrometer method improved for making particle-size analysis of soil. Agronomy Journal 54(5): 464-465.
    7. Carter S., Shackley S., Sohi T., Suy T., and Haefele S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3(2): 404-418. https://doi.org/10.3390/agronomy3020404.
    8. Dubois D., Gilleres K.A., and Hamilton J.K. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28:350–356.
    9. Feizi K., Amirinejad A., and Ghobadi M. 2021. The effects of biochar and salicylic acid on reducing Pb-induced stress in basil crop (Ocimum basilicum L.). Iranian Journal of Soil and Water Research 52(2): 539-547. (In Persian with English abstract). https://doi.org/10.22059/IJSWR.2020.313282.668795.
    10. Gunes A., Inal A., Alpaslan M., Eraslan F., Bagci E.G., and Cicek N. 2017. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology 194(3): 728-736. https://doi.org/10.1016/j.jplph.2005.12.009.
    11. 12. Hussain I., Siddique A., Ashraf M., Rasheed R., Ibrahim M., Iqbal M., Akbar S., and Imran M. 2007. Does exogenous application of ascorbic acid modulate growth, photosynthetic pigments and oxidative defense in okra (Abelmos chusesculentus) under lead stress? Acta Physiologiae Plantarum 39: 144-151. https://doi.org/10.1007/s11738-017-2439-0.
    12. Jiang X.J., Luo Y.M., Liu Q., Liu S.L., and Zhao Q.G. 2014. Effects of lead on nutrient uptake and translocation by Indian mustard. Environmental Geochemistry and Health 26(2): 319-324. https://doi.org/10.1007/978-3-540-32714.
    13. 14. Khan I., Iqbal M., Ashraf M.Y., Ashraf M.A., and Ali S. 2016. Organic chelats-mediated enhanced lead (Pb) uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinace aoleracea). Journal of Hazardous Materials 317: 352-361. https://doi.org/ 10.1016/j.jhazmat.2016.06.007.
    14. 15. Khan M.I., Fatma M., Per T.S., Anjum N., and Khan A. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6: 462-770. https://doi.org/10.3389/fpls.2015.00462.
    15. 16. Khasheim A., Shahidi A., Yaghoobzadeh M., and Dastourani M. 2019. Effect of biochar application and water tensin levels on yield and yield components of medicinal plant (Trachyspermum ammi). Iranian Journal of Irrigation and Drainage 2(13): 319-328. (In Persian with English abstract)
    16. 17. Klute َ 1986. Methods of Soil Analysis: Part 1 and 2. Physical and Chemical Methods, Second Edition. Soil Science Society of America, Inc.
    17. 18. Kocal N., Sonnewald U., and Sonnewald S. 2018. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction in tomato. Plant Physiology 148: 1523-36. https://doi.org/10.1104/pp.108.127977.
    18. Leng L., Xiong Q., Yang L., Li H., Zhou Y., Zhang W., Jiang S., Li H., and Huang H. 2021. An overview on engineering the surface area and porosity of biochar. Science of Total Environment 763: 144-204. https://doi.org/10.1016/j.scitotenv.2020.144204.
    19. 20. Maasoumi G., Lahouti M., and Mahmoodzadeh H. 2016. Effect of combined application of salicylic acid and zinc on germination indices and vegetative growth of mung bean. Crop Physiology Journal 8(30):121-133.
    20. 21. Mehdimiri S., Ahmadi S., and Moradi P. 2015. Influence of salicylic acid and citric acid on the growth, biochemical characteristics and essential oil content of Thyme (Thymus vulgaris). Journal of Medicinal Plants and By-Products 2: 141-146.
    21. Metwally A., Finkemeier I., Georgi M., and Dietz K.J. 2015. Salicylic acid alleviates the cadmium toxicity in barley seedling. Plant Physiology 132: 272-281. https://doi.org/10.1104/pp.102.018457.
    22. Nagajyoti P.C., Lee K.D., and Sreekanth T.V. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8(3): 199-216.‏ https://doi.org/ 10.1007/S10311-010-0297-8.
    23. Nie C., Yang X., Niazi N.K., Xu X., Wen Y., Rinklebe J., and Wang H. 2018. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere200: 274-282. https://doi.org/10.1016/j.chemosphere.2018.02.134.
    24. 25. Omidbeigi R. 2010. Production and Processing of Medicinal Plants (4th Ed). Astan Ghods Razavi pp:93.
    25. 26. Padash A., Ghanbari A., and Asgharipour M.R. 2016. Effect of salicylic acid on concentration of nutrients, protein and antioxidant enzymes of basil under lead stress. Iranian Journal of Plant Biology 8(27): 17-32. (In Persian)
    26. 27. Park J.H., Choppala G. Lee S.J., Bolan N., Chung J.W., and Edraki M. 2013. Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Water, Air and Soil Pollution 224: 1-12. https://doi.org/10.1007/s11270-013-1711-1.
    27. 28. Parsa Doust F., Bahreininejad B., Safari Sanjani A.K., and Kaboli M.M. 2007. Phytoremediation of lead with native rangeland plants in Irankoh polluted soils. Pajouhesh & Sazandegi 75: 54-63. (In Persian with English abstract)
    28. 29. Pikuła D., and Stepien W. 2021. Effect of the degree of soil contamination with heavy metals on their mobility in the soil profile in a microplot experiment. Agronomy 11: 878-880. https://doi.org/10.3390/agronomy11050878.
    29. 30. Rasheed R., Ashraf M.A., Hussain I., Haider M.Z., Kanwal U., and Iqbal M. 2014. Exogenous proline and glycine betaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum) cultivars. Brazilian Journal of Botany 37: 399-406. https://doi.org/10.1007/s40415-014-0089-7.
    30. 31. Shakirova F., Sakhabutdinova A., Bezrukova M.V., Fatkhutdinova R.A., and Fatkhutdinova D.R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Journal of Plant Science 164(3): 317-322. https://doi.org/10.1016/S0168-9452(02)00415-6.
    31. Sharma P., and Dubey R.S. 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology 17(1): 35-52. https://doi.org/10.1590/S1677-04202005000100004.
    32. Teiymouri A., Amirinejad A., and Ghobadi M. 2021. The effects of biochar and salicylic acid on alleviation of Pb stress in salvia (Salvia afficinalis L.). Journal of Soil and Plant Interactions 12(1): 95-108. (In Persian with English abstract). https://doi.org/10.47176/jspi.12.1.20161.
    33. Valizadeh Ghale Beig A., Nemati S.H., Emami H., and Aroiee H. 2020. The Effect of Cutflower-Rose Waste Biochar on Morphological Traits and Heavy Metals in Lettuce (Lactuca sativa L.). Journal of Science and Technology of Greenhouse Culture 10(4): 21-35. (In Persian with English abstract)
    34. Walkley A., and Black I.A. 1934. Examination of the degtjareff method determining soil organic matter and proposed modification of the chromic acid titration method. Soil Science 37(1): 29-38.
    35. Wang Z., Shen D., Wu C., and Gu S. 2018. State-of-the-art on the production and application of carbon nanomaterial from biomass. Green Chemistry 20: 5031-5057. https://doi.org/10.1039/c8gc01748d.
    36. Zhou J., Zhang Z., Zhang Y., Wei Y., and Jiang Z. 2018. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PloS one 13(3): 137-140. https://doi.org/10.1371/journal.0191139.
CAPTCHA Image