کارایی مدل آکواکراپ در شبیه‌سازی عملکرد کینوا در مدیریت‌های مختلف کم‌آبیاری

نوع مقاله : مقالات پژوهشی

نویسندگان

بخش آبیاری و فیزیک خاک، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

مدل آکواکراپ (Aquacrop) یکی از مدل‌های کاربردی بوده که به‌منظور شبیه‌سازی تغییرات عملکرد در مدیریت‌های مختلف آب‌وخاک مورد استفاده واقع می‌شود. این پژوهش در دو سال زراعی 1398 و 1399 با هدف تعیین کارایی مدل آکواکراپ در شبیه‌سازی عملکرد دانه و زیست­توده گیاه کینوا با اعمال سه تیمار تنش 30، 50 و 70 درصد مصرف آب قابل‌استفاده در مراحل توسعه و میانی رشد اجرا گردید (در شرایط آب‌وخاک غیرشور). از نتایج سال اول به‌منظور واسنجی و از نتایج سال دوم به‌منظور اعتبارسنجی مدل استفاده گردید. نتایج سال اول نشان داد که تنش 50 و 70 درصد تخلیه (کم­آبیاری) در مرحله توسعه به ترتیب موجب کاهش عملکرد دانه به میزان 17 و 33 درصد نسبت به تیمار شاهد (بدون تنش) و هم‌چنین اعمال این تنش در مرحله میانی موجب کاهش عملکرد در حدود 12 و 28 درصد گردید. نتایج مقایسه شاخص‌های آماری عملکرد دانه، زیست­توده و کارایی مصرف آب در سال اول نشان داد که ریشه میانگین مربعات خطای نرمال شده دانه، زیست­توده و کارایی مصرف آب به‌ترتیب 9، 8 و 14 درصد و کارایی مدل برای این صفات به‌ترتیب 81/0، 77/0 و 64/0 می‌باشد. هم‌چنین نتایج مقایسه شاخص‌های آماری عملکرد دانه، زیست­توده و کارایی مصرف آب در سال دوم به‌ترتیب 9، 6 و 9 درصد و کارایی مدل برای این صفات به‌ترتیب 68/0، 71/0 و 62/0 تعیین شد. نتایج حاصل از واسنجی و اعتبارسنجی مدل بیانگر دقت و کارایی مناسب مدل در شبیه‌سازی عملکرد دانه، زیست­توده و کارایی مصرف آب گیاه کینوا بوده و می‌توان از این مدل به‌منظور ارائه مناسب‌ترین سناریو و مدیریت آبیاری در حالت‌های مختلف تنش و کم‌آبیاری استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Efficiency of Aquacrop Model in Simulating Yield of Quinoa in Different Deficit Irrigation Managements

نویسندگان [English]

  • M.R. Emdad
  • A. Tafteh
  • N.A. Ebrahimipak
Department of Irrigation and Soil Physics, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Introduction
   Quinoa (Chenopodium quinoa) is native plant in Bolivia, Chile and Peru, which is widely adapted to different climatic conditions and can grow in all soils. This plant has shown adequate adaptation to arid and semi-arid areas conditions and is planted from areas with low elevation (sea level) to areas with an altitude of 4000 meters above sea level. Quinoa is often cultivated in areas with limited water resources, and it is rare to find quinoa cultivation under full irrigation conditions. Some studies have shown that quinoa yields slightly better under full irrigation (without water restriction) than quinoa under deficit irrigation. Crop growth models are very important tools in the study of agricultural systems and they can be used to simulate the yield of crop in different conditions. Given that the study of performance limiting factors requires numerous and costly research and experiments in different areas, so finding a way to reduce the number, time and cost of these experiments is worthwhile. Aquacrop model is one of the applied models that are used to simulate yield variations in different water and soil management.
Materials and Methods
   This investigation was carried out in two growing seasons of 2019 and 2020 to determine the efficiency of Aquacrop model for simulating Quinoa grain yield and biomass under imposing three stress treatments of 30, 50 and 70% of water consumption in development and mid-growth stages. Plant spacing was 40 cm between rows and 7 cm between plants within rows. Seeds of quinoa (Titicaca cultivar) were cultivated in the first decade of August 2019 and in the third decade of July 2020. The experiment was a randomized complete block design with three replications. Three deficit irrigation treatments including 30, 50 and 70% of available water were considered in two growth stages (development and mid-growth) in 18 experimental plots (3 × 4 m). Soil moisture in rooting depth (about 40 cm) was measured by TDR and after the soil moisture of the treatments reached the desired values, plots were irrigated until the soil moisture reached the field capacity. The results of grain and biomass yield in the first year were used to calibrate the Aquacrop model and the results of the second year were used to validate the model. Root mean square error (RMSE), normalized root mean square error (NRMSE), Willmott index (D), model efficiency (EF) and mean error deviation (MBE) were used to compare the simulated and observed values.
Results and Discussion
   The results of the first and second year were used to calibrate and validate the model, respectively. The results of the first year showed that irrigation with 50 and 70% of available water in the development stage reduced quinoa grain yield by 17 and 33%, respectively, compared to the control treatment. The application of these two deficit irrigation treatments in the middle stage reduced the yield by about 12 and 28%, respectively. The results of comparing the statistical indices of grain yield, biomass and water use efficiency showed that the NRMSE for grain, biomass and water use efficiency were 9, 8 and 14% in the first year and 9, 6 and 9% in the second years. Furthermore, the EF for these traits were 0.81, 0.77 and 0.64 in the first year and 0.68, 0.71 and 0.62, in the second year, respectively.
Conclusion
The results of calibration and validation of the model showed the accuracy and efficiency of the Aquacrop model in simulating grain yield, biomass and water use efficiency of quinoa. This model can be used to provide the most appropriate scenario and irrigation management for different levels of deficit irrigation managements.

کلیدواژه‌ها [English]

  • Evapotranspiration
  • Irrigation management
  • Plant modeling
  • Water stress
  • Water use efficiency
  • Alvarez-Jubete L., Arendt E.K., and Gallagher E. 2009. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology 21: 106-113. https://doi.org/10.1016/j.tifs.2009.10.014.
  • Babazadeh H., and Sarai Tabrizi M. 2012. Evaluation of AquaCrop model under soybean irrigation management conditions. Water and Soil 26(2). https: //doi: 10.22067 / jsw.v0i0.14156.
  • Bazile D, Bertero D., and Nieto C. 2015. State of the Art Report on Quinoa Around the World in 2013. Rome: Food and Agriculture Organization of the United Nations (FAO) & CIRAD (Centre de coopération international).
  • Bitri M., Grazhdani S., and Ahmeti A. 2014. Validation of the Aqua Crop Model for full and deficit Irrigation potato production in environmental conditions of korca zone, south-eastern Albania. International Journal of Innovative Reaserch in Science, Engineering and Technology 3(5): 12013-12020.
  • Bois J.F., Winkel T., Lhomme J.P., Raffaillac J.P., and Rocheteau A. 2006. Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: Effects on germination, phenology, growth and freezing. European Journal of Agronomy 25: 299-308. https: //doi:10.1016/j.eja.2006.06.007.
  • Christiansen J.L., Jacobsen S.-E., and Jّrgensen S.T. 2010. Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa). Acta Agriculturae Scandinavica, Section B - Plant Soil Science 1-6. https://doi.org/10.1080/09064710903295184.
  • Choukr-Allah R., Rao NK., Hirich A., Shahid M., Alshankiti A., Toderich K., Gill S., and Ur Rahman Butt K. 2016. Quinoa for marginal environments: toward Future Food and Nutritional Security in MENA and Central Asia Regions. Frontiers in Plant Science 7: 346. https://doi.org/10.3389/fpls.2016.00346.
  • Colak Y., Bozkurt A., Yazar A., Alghory and Tekin S. 2021. Yield and water productivity response of quinoa to various deficit irrigation regimes applied with surface and subsurface drip systems. The Journal of Agricultural Science. https://doi.org/10.1017/S0021859621000265. 1–12.
  • Geerts S., Raes D., Garcia M., Vacher J., Mamani R., Mendoza J., Huanca R., Morales B., Miranda R., Cusicanqui J. and Taboada C. 2008a. Introducing deficit irrigation to stablize yields of quinoa (Chenopodium quinoa). European Journal of Agronomy 28: 427-436. https://doi:10.1016/j.agwat.2008.02.012.
  • Geerts S., Raes D., Garcia M., Condori O., Mamani J., Miranda R., Cusicanqui J., Taboada C., and Vacher J. 2008b. Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa) in the Southern Bolivian Altiplano. Agricultural Water Management 95: 909-917. https:// doi:10.1016/j.fcr.2008.04.008.
  • Geerts S., Raes D., Garcia M., Mendoza J., and Huanca R. 2008c. Indicators to quantify the flexible phenology of quinoa (Chenopodium quinoa) in response to drought stress. Field Crops Research 108: 150-156. https://doi.org/10.1016/j.agwat.2009.06.020.
  • Geerts S., Raes D., Garcia M., Taboada C., Miranda R., Cusicanqui J., Mhizha T., and Vacher J. 2009. Modelling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano. Agricultural Water Management 96: 1652-1658. https://doi:2134/agronj2008.0029xs.
  • Heng L.K., Hsiao T.C., Evett S., Howell T., and Steduto P. 2009. Validating the FAO AquaCrop Model for Irrigated and Water Deficient Field Maize. Agronomy Journal 101: 488–498. https://doi.org/10.1081/FRI-120018872.
  • Jacobsen S.E., Mujica A., and Jensen C.R. 2003. The Resistance of Quinoa (Chenopodium quinoa) to Adverse Abiotic Factors. Food Reviews International 19: 99-109.
  • Jamali S., Sharifan H., Hezarjaribi A., and Sepahvand N. 2016. The effect of different levels of salinity on germination and growth indices of two cultivars of Quinoa. Journal of Water and Soil Resources Conservation 6(1): 87-98. https://doi: 1111/jac.12069.
  • Lavini A., Pulvento C., d’Andria R., Riccardi M., Choukr-Allah R., Belhabib O., Yazar A., Ince Kaya Ç., Sezen SM., Qadir M., and Jacobsen SE. 2014 Quinoa’s potential in the Mediterranean Region. Journal of Agronomy and Crop Science 200: 344–360. https://doi: 10.22059/ijfcs.2017.128439.653907.
  • Mamedi A., Tavakkol Afshari R., and Sepahvand N. 2017. Quantifying seed germination response of quinoa (Chenopodium quinoa Willd) under temperature and drought stress regimes. Iranian Journal of Field Crop Science 48(3): 615-623. https://doi: 10.22059/ijfcs.2017.128439.653907.
  • Oelke E.A., Putnam D.H., Teynor D.M., and Oplinger E.S. 1992. Alternative field crops manual–quinoa. USA, University of Purdue. https://doi.org/10.1081/FRI-120018864.
  • Rojas W. 2003. Multivariate Analysis of Genetic Diversity of Bolivian Quinoa Germplasm. Food Reviews International 19: 9-23.
  • Raes D., Steduto P., Hsiao TC., and Fereres E. 2012. Reference manual AquaCrop, FAO, Land and Water Division, Rome, Italy.
  • Steduto P., Hsiao C., Hereres E., And Raes D. 2012. Crop yield response to water. FAO irrigation and drainage, No, 66.
  • Yazar A., Sezen SM., Bozkurt Çolak Y., Ince Kaya and Tekin S. 2017. Effect of planting times and saline irrigation of quinoa using drainage water on yield and yield components under the Mediterranean environmental contitions. International Journal of Research in Agriculture and Forestry 4: 8–16.
CAPTCHA Image
دوره 36، شماره 3 - شماره پیاپی 83
مرداد و شهریور 1401
صفحه 319-331
  • تاریخ دریافت: 21 فروردین 1401
  • تاریخ بازنگری: 05 اردیبهشت 1401
  • تاریخ پذیرش: 17 خرداد 1401
  • تاریخ اولین انتشار: 18 خرداد 1401