دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد، دانشکده کشاورزی، گروه علوم و مهندسی آب

2 دانشیار گروه آموزشی علوم و مهندسی آب-دانشکده کشاورزی دانشگاه فردوسی مشهد

چکیده

بارش یکی از مهم‌ترین پارامترهای ورودی در مدل‌های هیدرولوژیکی جهت شبیه‌سازی بارش-رواناب می‌باشد که به علت عدم پراکندگی مناسب ایستگاه‌های بارانسنجی و تازه تأسیس بودن برخی از این ایستگاه‌ها در اکثر حوضه‌های کشور، استفاده از این داده‌های بارش با چالشی جدی روبروست. از این رو استفاده از روش‌های سنجش از دوری می‌تواند یکی از گزینه‌های مورد استفاده در زمینه شبیه‌سازی جریان با استفاده از مدل‌های هیدرولوژیکی باشد. در پژوهش حاضر، داده‌های بارش بازتحلیل‌شده ERA5 برای حوضه آبریز کشف‌رود در گام‌های زمانی روزانه و ماهانه مورد ارزیابی قرار گرفت و سپس با استفاده از داده‌های بارش ایستگاه زشک و پارامترهای مربوط به حوضه آبخیز زشک در نرم‌افزار HEC-HMS، هیدروگراف جریان آن مورد بررسی قرار گرفت. نتایج نشان داد که داده‌های بارش ERA5 در گام‏های زمانی روزانه و ماهانه دارای کم‌برآوردی می‌باشند و نیز در گام زمانی ماهانه دقت این داده‏های بارش در تشخیص وقایع بارشی (از نظر شاخص‏های FAR، TS و POD) بالاتر از گام زمانی روزانه بود. همچنین داده‌های بارش بازتحلیل‌شده ERA5 در گام زمانی ماهانه، در ماه‌های گرم تابستان دقت پایین‌تری در تشخیص وقایع بارش نسبت به بقیه ماه‌های سال داشتند. هیدروگراف جریان حاصل از داده‌های بارش بازتحلیل ‌شده ERA5 نسبت به هیدروگراف مشاهداتی دارای کم‌برآوردی بود که علت آن کم‌برآورد کردن میزان بارش در موقعیت ایستگاه زشک در محدوده روزهای متناظر با واقعه 23/1/99 توسط ERA5 بود. همچنین هیدروگراف یادشده در مقایسه با هیدروگراف مشاهداتی در محدوده غیر قابل قبول (NSE≤0.5 و PBias≤±25) بود. به طور کلی دقت هیدروگراف جریان حاصل از این محصول نسبت به هیدروگراف جریان حاصل از داده‌های بارش ایستگاه زشک، نمی‌تواند منبع مورد اعتمادی در مدلسازی هیدرولوژیکی باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Streamflow Hydrograph using ERA5 Precipitation Data in HEC-HMS Model

نویسندگان [English]

  • S. Pourentezari 1
  • K. Esmaili 1
  • A.R. Faridhosseini 2
  • E. Ghafari 1

1 Ferdowsi University of Mashhad, Faculty of Agriculture, Department of Water Science and Engineering

2 Ferdowsi University of Mashhad, Faculty of Agriculture, Department of Water Science and Engineering

چکیده [English]

Introduction
 Precipitation is one of the most important input parameters of the hydrological models for rainfall-runoff simulation, which due to the lack of proper dispersion of rain gauge stations and the newly established some of these stations in most basins of the country, the use of these precipitation data faces serious challenges. Therefore, the use of remote-sensing methods is one of the ways that can be used for the streamflow simulation using hydrological models. Runoff is also one of the most important hydrological variables and rainfall-runoff modeling is one of the key items in hydrological sciences to estimate runoff characteristics such as volume, peak flow and arrival time to peak flow. In the present study, we used reanalyzed precipitation data and then evaluated the simulated streamflow using this precipitation data in the Zoshk subbasin. The precipitation data was validated with in situ data, of Kashafrood basin.
Materials and Methods
 The reanalysis precipitation data was selected from the ERA5 precipitation data, and the HEC-HMS was used for the rainfall-runoff simulation. The basin parameters were calculated by the GIS menu. This menu is the newest option in the HEC-HMS software that needs only the DEM basin for calculating the basin parameters. In the present study, we should validate the ERA5 reanalysis precipitation data with in situ data, so we did that in the Kashafrood basin. The number of the rain gauge stations were 34, but some of the stations didn't have complete data and omitted them from the list of the rain gauge stations. For the validation ERA5 reanalysis precipitation data was used from the R, NSE, RMSE, Bias, FAR, POD and TS statistical indicators. These indicators were calculated by programming in EXCEL Visual Basic. The ERA5 precipitation data was evaluated for the Kashfarood basin at daily and monthly time steps. The DEM Zoshk was downloaded with the spatial resolution of 12.5 meters from ALOS-PALSAR satellite and then the basin parameters were calculated by the GIS menu. The SCS curve number was selected as a loss method. In this method, the calculations related to the percentage of impermeability and the average curve number of each sub-basin were obtained through land use and curve number layers, respectively. The SCS unit hydrograph was selected as a transform method. The recession method was selected as a base flow method. NSE and PBias were used for the calibration and validation events in HEC-HMS. In this way, at first the HEC-HMS model was calibrated by tow in situ rainfall-runoff events (91/1/11 and 91/2/6), and then validated by one in situ rainfall-runoff event (99/1/23). For validation streamflow of the ERA5 reanalysis precipitation data, the event on 99/1/23 was used and their streamflow hydrographs were evaluated with each other in Zoshk station.
Results and Discussion
 The results showed that the reanalysis precipitation data of ERA5 had underestimation in daily and monthly time steps. Also in monthly time step, the accuracy of these precipitation dataset in detecting precipitation events (in terms of FAR, TS, and POD indices) was higher than a daily one. In addition, in monthly time steps it had worse accuracy in summer months than the rest of the year in detecting precipitation events (in terms of FAR, TS, and POD indices). For streamflow evaluation, in the calibration phase both NSE was in very good and good ranges, and PBias was in very good, good and acceptable ranges. In addition, the model underestimated the observational one. Finally the ERA5 reanalysis precipitation data was compared by 99/1/23 hydrograph event. The streamflow hydrograph from the ERA5 reanalysis precipitation data was underestimated due to ERA5 underestimation of the precipitation at the Zoshk rain gauge on the days corresponding to the 23/6/99 incident. The ERA5 reanalyzed precipitation data with NSE and Bias percentage coefficients in unacceptable range (NSE≤0.5 and PBias≤±25), compared to flow hydrograph obtained from Zoshk station precipitation data, the efficiency of this precipitation dataset is low. The range of the streamflow hydrograph from the ERA5 precipitation data was unsatisfactory in compared to the observational hydrograph (NSE = -0.47 and PBias = -55.16).
Conclusion
 In general, the accuracy of the flow hydrograph of this product compared to the flow hydrograph of the precipitation data of Zoshk station (NSE = 0.64 and PBias = -15.82), cannot be a relatively reliable source instead of in situ rainfall data in hydrological simulation. The suggestion for future studies is to evaluate other rainfall data based on remote sensing methods in hydrological modeling.
 

کلیدواژه‌ها [English]

  • ERA5
  • GIS Menu
  • HEC-HMS
  • Streamflow hydrograph estimation
  • Zoshk river
1- Amjad, M., Yilmaz, M., Yucel, I., & Yilmaz, K. (2020). Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography. Journal of Hydrology 584: 124707. https://doi.org/10.1016/j.jhydrol.2020.124707.
2- Azari, H., Matkan, A.A., Shakibaa, A., & Pourali, S.H. (2009). Simulation and flood warning with hydrology models in gis and precipitation estimation through remote sensing. Iranian Journal of Geology 3: 39-51.
3- Champagne, O., Arain, M., Wang, S., Leduc, M., & Russell, H. (2021). Interdecadal variability of streamflow in the hudson bay lowlands watersheds driven by atmospheric circulation. Journal of Hydrology Regional Studies 36: 100868. https://doi.org/10.1016/j.ejrh.2021.100868.
4- ErfaniRahmatnia, A., Babaian, I., & Entezari, A. (2018). Efficiency of era-interim retrieval data in simulating the observed rainfall of khorasan razavi meteorological stations.p. 5. The Second National Conference on Meteorology of Iran, 9 May.Mashhad Ferdowsi University. (In Persian with English abstract)
5- Gorjizade, A., Akhondali, A., Shahbazi, A., & Moridi, A. (2019). Comparison and evaluation of precipitation estimated by era-interim, persiann-cdr and chirps models at the upstream of maroon dam. Iran Water Resources Research 15: 267-279. (In Persian with English abstract)
6- Hwang, S.-O., Park, J., & Kim, H.M. (2019). Effect of hydrometeor species on very-short-range simulations of precipitation using era5. Atmospheric Research 218: 245-256. https://doi.org/10.1016/j.atmosres.2018.12.008.
7- Izadi, N., Ghasemi, E., Ranjbar, A., Shamsipour, A., Fattahi, E., & Habibi, M. (2021). Evaluation of era5 precipitation accuracy based on various time scales over iran during 2000–2018. Water 13: 2538. https://doi.org/10.3390/w13182538.
8- Karimi, M., Heidari, S., & Rafati, S. (2021). The trend of atmospheric water cycle components (precipitation and precipitable water) in catchments of iran. Journal of Spatial Analysis Environmental Hazarts 8: 33-54. (In Persian)
9- Khezriannejad, N., Hajjam, S., Amirhossein, M., & Ibrahim, M. (2013). Real time runoff forecasting of tire basin using quantitative precipitation forecasting of wrf model. Journal of Climate Research 3: 53-66. (In Persian)
10- Lorenzo, A., Lorini, V., Hirpa, F.A., Harrigan, S., Zsoter, E., Prudhomme, C., & Salamon, P. (2020). A global streamflow reanalysis for 1980–2018. Journal of Hydrology X 6: 100049. https://doi.org/10.1016/j.hydroa.2019.100049.
11- Moriasi, D., Gitau, M., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE (American Society of Agricultural and Biological Engineers) 58: 1763-1785. https://doi.org/10.13031/trans.58.10715.
12- Nazeer, A., Maskey, S., Skaugen, T., & McClain, M.E. (2022). Simulating the hydrological regime of the snow fed and glaciarised gilgit basin in the upper indus using global precipitation products and a data parsimonious precipitation-runoff model. Science of The Total Environment 802: 149872. https://doi.org/10.1016/j.scitotenv.2021.149872.
13- Sabah, P., Junaid Nazir, K., Rohitashw, K., & Saqib Parvaze, A. (2021). Flood forecasting in the sparsely gauged jhelum river basin of greater himalayas using integrated hydrological and hydraulic modelling approach. Climate Dynamics. https://doi.org/10.21203/rs.3.rs-461873/v1.
14- Shayeghi, A., Azizian, A., & Brocca, L. (2019). The reliability of reanalysis and remotely sensed precipitation products for hydrological simulation over the sefidrood river basin in iran. Hydrological Sciences Journal/Journal des Sciences Hydrologiques. https://doi.org/10.1080/02626667.2019.1691217.
15- Singh, T., Saha, U., Prasad, V.S., & Gupta, M.D. (2021). Assessment of newly-developed high resolution reanalyses (imdaa, ngfs and era5) against rainfall observations for indian region. Atmospheric Research 259: 105679. https://doi.org/10.1016/j.atmosres.2021.105679.
16- USACE, Hydrologic modeling system hec-hms,user’s manual, technical reference manual, Washington, DC: United States Army Corps of Engineers, 2021, p. 676. [Online]. Available.
17- Voropay, N., Ryazanova, A., & Dyukarev, E. (2021). High-resolution bias-corrected precipitation data over south Siberia, Russia. Atmospheric Research 254: 105528. https://doi.org/10.1016/j.atmosres.2021.105528.
18- Xu, X., Frey, S.K., & Ma, D. (2022). Hydrological performance of era5 and merra-2 precipitation products over the great lakes basin. Journal of Hydrology: Regional Studies 39: 100982.  https://doi.org/10.1016/j.ejrh.2021.100982.
19- Yin, J., Guo, S., gu, L., Zeng, Z., Liu, D., Chen, J., Shen, Y., & Xu, C.-Y. (2020). Blending multi-satellite, atmospheric reanalysis and gauge precipitation products to facilitate hydrological modelling. Journal of Hydrology 593. https://doi.org/10.1016/j.jhydrol.2020.125878.
20- Yuan, X., Yang, K., Lu, H., He, J., Sun, J., & Wang, Y. (2021). Characterizing the features of precipitation for the tibetan plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities. Atmospheric Research 264: 105875. https://doi.org/10.1016/j.atmosres.2021.105875.
CAPTCHA Image