تعیین الگوی کشت بهینه مبتنی بر هم‏بست آب، انرژی، غذا و سود اقتصادی (مطالعه موردی استان مرکزی- دشت فراهان)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 استادیار بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی

3 محقق، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

4 مرکز تحقیقات کشاورزی و منابع طبیعی استان مرکزی

چکیده

ارائه و اجرای یک الگوی کشت بهینه علاوه بر مدیریت بهتر منابع پایه آب و خاک، امکان کشاورزی پایدار را فراهم نموده و از لحاظ جنبه‏های اقتصادی و اجتماعی یک ضرورت انکارناپذیر است. این تحقیق با هدف بهینه‏سازی الگوی کشت با استفاده از رویکرد برنامه‏ریزی چند هدفه، برای پیوند شاخص‏های آب، غذا، انرژی و سود اقتصادی در دشت فراهان و در سال 1400 اجرا شد. الگوی کشت بهینه برای شرایط نرمال، خشکسالی و ترسالی به گونه‏ای ارائه شد که بهره‏برداری از منابع آب در شرایط پایدار صورت پذیرد. نتایج حاصل نشان داد، مقدار آب مصرفی الگوی کشت بهینه در شرایط نرمال، خشکسالی و ترسالی به ترتیب 23، 29 و 18 درصد نسبت به الگوی کشت موجود کاهش می‏یابد. از طرفی مقدار کالری تولیدی الگوی کشت بهینه در شرایط نرمال، خشکسالی و ترسالی به ترتیب 52، 62 و 45 درصد، متوسط بهره‏وری انرژی 41، 43و 36 درصد و سود خالص تولیدی 43، 31 و 44 درصد نسبت به الگوی کشت موجود افزایش می‏یابد. به منظور بهره‏برداری بهینه از منابع آب بایستی الگوی کشت در دوره‏های خشکسالی، نرمال و ترسالی مطابق الگوی بهینه پیشنهادی تغییر یابد. بنابراین، با توجه به اینکه الگوی کشت موجود کمترین انطباق را برای رسیدن به اهداف چهارگانه کاهش مصرف آب، افزایش تولید غذا، کاهش مصرف انرژی و افزایش سود اقتصادی دارد، برنامه‏ریزی‏های کلان در این دشت بایستی در راستای اجرای الگوی کشت بهینه پیشنهادی تدوین گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the Optimal Cropping Pattern Based on the Multiple Objectives of Water, Energy, Food and Economic Profit Indices (Case Study: Markazi Province - Farahan Plain)

نویسندگان [English]

  • M. Goodarzi 1
  • J. Ghadbeiklou 2
  • A. Ghadiry 3
  • M.A. Khodshenas 4
1 Assistant Professor, Agricultural Engineering Research Department, Markazi Agricultural and Natural Resources Research and Education Center, AREEO, Arak, Iran
2 Markazi Agricultural and Resources Research and Training Center, AREEO
3 Researcher, Seed and Plant Improvement Research Department, Markazi Agricultural and Resources Research and Training Center, AREEO, Arak, Iran
4 Scientific Member, Soil and Water Department, Markazi Agricultural and Resources Research and Training Center, AREEO, Arak, Iran
چکیده [English]

Introduction
Water is one of the most important factors of development in human societies, water scarcity, specially fresh water which is one of the main limitation for agricultural, economic and social development in most developing countries. Providing and implementing an optimal cropping pattern, in addition to better management of water and soil resources, can lead to reducing production risk, increasing the ability to deal with crises, improving employment, better management of providing services to farmers, and providing the possibility of expanding agro-based industries. In many regions of the world, including in Iran, many studies have been done to improve the cropping pattern in different regions. Despite the existing problems in designing and implementing the appropriate cropping pattern in the plains, modifying the cropping pattern based on scientific principles and emphasizing the reduction of water consumption while reducing water consumption provides the possibility of sustainable agriculture and in terms of economic and social aspects. Implementing an optimized cropping pattern in the Farahan Plain is an undeniable necessity to preserve national resources. This study was conducted with the objective of optimizing the cropping pattern in the area, taking into account multiple criteria.
 
Methodology
In this research, considering the importance of determining the cropping pattern based on the multiple objectives of the decision makers, it was tried to determine the optimal cropping pattern by using mathematical programming and fuzzy logic by establishing a compromise between the objectives of the cropping pattern. The model considered for this study was in the framework of the goal of the maximum ideal distance (Fuzzy Composite Distance). Also, in order to use water resources sustainably, scenarios of cropping patterns are presented based on different conditions of water resources uses. Based on the basin's water resource stability, an optimal cropping pattern was developed to address the conditions of normal water resource exploitation, as well as sustainable and unsustainable scenarios. Each scenario corresponds to a specific period. To achieve this, a multi-objective planning approach was utilized, integrating water, food, energy, and economic profit indicators. The resulting optimal cropping pattern considers stable water resource utilization during normal, drought, and wet periods, ensuring sustainable conditions.
 
Results and Discussion
The results showed that the amount of water consumed by the optimal cropping pattern compared to the existing cropping pattern under normal, drought and wet conditions is reduced by 23.2, 29.2 and 18.1%, respectively. On the other hand, compared to the existing cropping pattern, the amount of calories produced by the optimal cropping pattern under normal, drought and wet conditions increases by 51.7, 61.9 and 45.2%, the average energy efficiency increases by 40.9, 42.8 and 35.8% and the net profit productivity increases by 43.3, 30.9 and 44.2 %, respectively. Based on the obtained results, it can be seen that in the optimal cropping pattern in drought conditions, the cultivated area of crops such as potatoes, onions, tomatoes, grain corn, sugar beets, beans, alfalfa and watermelons should reach to the zero or be at the lowest possible level. In normal and drought conditions, the cultivated area of these crops should be minimal. On the other hand, the area under cultivation of crops such as fodder sorghum, fodder corn, saffron, cumin, camellia and medicinal plants should be increased and the cultivation of these crops should be promoted at the region. Also, regarding horticultural products, the cultivated area of walnut, apple, peach, apricot and almond orchards should be minimized and replaced with plants such as grapes, oleaster, jujube, barberry, rose, and figs.
Conclusion
Based on the obtained results, it was found that the use of the optimal cropping pattern derived from the indicators of water, food, energy and economic profit is completely superior and preferred over the existing cropping pattern and single purpose optimal cropping pattern. In order to achieve sustainable water resource management, it is recommended to modify the cropping pattern during drought, normal, and wet periods based on the suggested optimal cropping pattern. The existing cropping pattern currently falls short in terms of achieving the four objectives of water, food, energy, and economic profit. Therefore, it is crucial to develop main plans and strategies in the Farahan Plain that align with the implementation of the proposed optimal cropping pattern. By doing so, it will be possible to optimize the allocation of water resources and achieve improved outcomes in terms of water availability, food production, energy efficiency, and economic profitability.

کلیدواژه‌ها [English]

  • Cropping pattern
  • Food
  • Optimization
  • Productivity
  • Water
  1. Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirement. FAO Irrig. Drain. Paper No. 56. FAO, Rome, Italy, 300 pp.
  2. Arefinia, A., & Ahmadaali, K. (2021). Multi-objective optimization of cropping pattern by emphasizing on water footprint in the eastern provinces of Iran. Iranian Journal of Irrigation & Drainage, 15(1), 188-198. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20087942.1400.15.1.16.6
  3. Avazyar, M., & Ahmadpour Borazjani, M., & Ziaee, S. (2018). Determine optimal crop pattern with an emphasis on increasing the irrigation efficiency in lands of Mollasadra Dam in Fars province. Water Engineering, 11(36), 21-32. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20086377.1397.11.36.3.4
  4. Azari, M., Ansari, H., Farid Hosseni, A., & Amirnejad, H. (2012). Determining the pattern of optimal crop production using linear programming, a case study in the east of Mazandaran province. The first national conference on sustainable agriculture and natural resources, Tehran. (In Persian)
  5. El Gafy, I., Grigg, N., & Reagan, W. (2017). Water-food-energy nexus index to maximize the economic water and energy productivity in an optimal cropping pattern. Water International, 42(4), 495-503. https://doi.org/10.1080/02508060.2017.1309630
  6. Goodarzi, M. (2022). Prioritization of Arable Crops Using Multiple Criteria and Analytical Hierarchy Process (AHP) Method, Case Study: Markazi Province - Farahan Plain. Iranian Journal of Irrigation & Drainage, 16(3), 485-498. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20087942.1401.16.3.3.4
  7. Hasan Panah, D., Nikshad, Kh., Sui, A.,& Karbalai Khayavi, H. (2014). Program for optimizing the cultivation pattern of crops and garden crops in Ardabil province. Technical Report, No. 38, Agricultural Research, Education and Extention Organization. (In Persian)
  8. Heydari, M.D., Omid, M., Akram, A., Mebli, H., & Rajaeifar, M.A. (2012). Energy consumption in agricultural and livestock products of Iran: a review study. 8th National Congress of Agricultural Machine Engineering (Biosystem) and Mechanization of Iran, Mashhad. (In Persian)
  9. Hooshmand, A., Mohammadzadeh, H., Kanooni, A., & Haghighi, A. (2021). Optimization of cultivation pattern based on risk management in the downstream irrigation network of Ardabil Yamchi Dam. Iranian Journal of Irrigation & Drainage, 15(4), 918-930. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20087942.2021.15.4.15.5
  10. Jones, D., & Barnes, E.M. (2000). Fuzzy composite programming to combine remote sensing and crop models for decision support in precision crop management. Journal of Agricultural System, 65, 137-158. https://doi.org/10.1016/S0308-521X(00)00026-3
  11. Kitani, O. (1999). CIGR Handbook of Agricultural Engineering, Volume V Energy and Biomass Engineering, Chapter 1 Natural Energy and Biomass, Part 1.3 Biomass Resources.
  12. Meftah Halaghi, M., Ghorbani, K., Keramatzadeh, A., & Salarijazi, M. (2020). Crop pattern optimization by using Goal programming (case study: Gharesoo basin). Journal of Water and Soil Conservation, 27(1), 163-180. (In Persian with English abstract) https://dx.doi.org/10.22069/jwsc.2020.16875.3223
  13. Mohammadi, H., Boustani, F., & Kafilzadeh, F. (2012). Optimal cropping pattern using a multi-objectives fuzzy non-linear optimization algorithm: A case study. Water and Wastewater, 23(4), 43-55. (In Persian with English abstract)
  14. Mohammadian, F., Alizadeh, A., Neyrizi, S., & Arabi, A. (2008). Development of a sustainable cropping pattern based on virtual water trade. Iranian Journal of Irrigation and Drainage, 2(1), 109-126. (In Persian with English abstract)
  15. Nikoi, A. (2014). Developing the national cropping pattern plan in pilot stage: Dasht village, Shahreza city, Esfahan Province. Final Report. Agricultural Research, Education and Exiension Organization. (In Persian)
  16. Panahi, A., & Falsafian, A. (2021). Optimization of the crop cultivation in the Shabestar plain under water constraint. Journal of Water and Soil Resources Conservation, 10(4), 36-48. (In Persian with English abstract). https://doi.org/10.30495/wsrcj.2021.18079
  17. Poursamani, S.(2018). Determining the optimal pattern of crop cultivation using the ideal planning method with an emphasis on the economic efficiency of water consumption and sustainable agriculture (case study: Torbat Jam plain). Master's thesis in the field of agricultural economics, Birjand University. (In Persian)
  18. Regulwar, D.G., & Gurav, J.B. (2013). Two-phase multi objective fuzzy linear programming approach for sustainable irrigation planning. Journal of Water Resource and Protection, 5(6), 642-651.  http://dx.doi.org/10.4236/jwarp.2013.56065
  19. Saaty, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation. Mcgraw-Hill, New York. http://dx.doi.org/10.1016/0377-2217(90)90057-I
  20. Salehi Shafa, N., Babazadeh, H., Aghayari, F., & Saremi, A. (2022). Determining the optimal cultivation area and pattern of agricultural water consumption in order to manage multi-objective planning. Iranian Journal of Irrigation & Drainage, 16(1), 119-133. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20087942.1401.16.1.10.7
  21. Siasar, H., & salari, A. (2021). Optimization of Sistan plain cropping pattern using multi-objective chaotic particle swarm optimization Algorithm. Iranian Journal of Irrigation & Drainage, 15(5), 1006-1017. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20087942.1400.15.5.2.0
  22. USDA. (1967). Irrigation water requirements. Tech. Release No. 21, United States Dept. of Agr., Soil Manage, 59, 67–75.
  23. Zamani, O., Ghaderzadeh, H., & Mortazavi, Sa. (2014). Cropping pattern system respect to sustainable agriculture and optimum use of energy "A case of Saqez County of Kurdistan Province". Journal of Agricultural Science and Sustainable Production, 24(1), 31-43.

Zeng, X., Kang, S., Li, F., Zhang, L., & Guo, P. (2010). Fuzzy multi-objective linear programming applying to crop area planning. Agricultural Water Management, 98(1), 134-142. https://doi.org/10.1016/j.agwat.2010.08.010

CAPTCHA Image