تأثیر مصرف تلفیقی ورمی‌کمپوست و کود مرغی در شرایط مختلف کم‌آبیاری بر رشد و عملکرد گیاه خیار

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه زابل

چکیده

در این تحقیق به بررسی سطوح مختلف آب آبیاری، ورمی­کمپوست و کود مرغی بر خیار پرداخته شد. آزمایش به­صورت کرت­های خرد شده در قالب طرح کامل تصادفی انجام گرفت. تیمارها شامل 3 سطح کود مرغی (2، 4 و 8 تن در هکتار)، 3 سطح ورمی­کمپوست (3، 6 و 9 تن در هکتار) و 3 سطح عمق آبیاری (100، 75 و 50 درصد نیاز آبی گیاه) بود. ورمی­کمپوست و کود مرغی هر دو قبل از کاشت به خاک داده شد. برداشت محصول هر 3 روز یک­بار انجام شد. وزن، قطر و طول میوه، طول بوته، درصد پروتئین و کلروفیل برگ در هر کرت به­دقت اندازه­گیری شد. همچنین عملکرد و بهره­وری مصرف آب آبیاری در پایان فصل محاسبه شدند. نتایج نشان داد که تیمار آبیاری، کود مرغی و ورمی­کمپوست بر پارامترهای اندازه­گیری شده در سطح احتمال 1 و 5 درصد تأثیر معنی­داری داشت. کاهش مصرف آب باعث کاهش عملکرد و اجزای عملکرد گردید اما از این نظر بین تیمار 100 و 75 درصد نیاز آبی گیاه تفاوت معنی­دار مشاهده نشد. بیشترین مقدار عملکرد در تیمار 100 درصد نیاز آبی گیاه و مصرف 4 تن در هکتار کود مرغی و 6 تن در هکتار ورمی­کمپوست به ­دست آمد که از این نظر با تیمار 75 درصد نیاز آبی تفاوت معنی­دار مشاهده نشد. بررسی اثرات میزان آب آبیاری بر مقدار پروتئین ماده خشک میوه نشان داد بیشترین مقدار پروتئین ماده خشک میوه (31/56 درصد) در تیمار 75 درصد نیاز آبی به دست­آمد و پروتئین ماده خشک در سایر تیمارها کمتر بود. در بررسی اثر متقابل ورمی­کمپوست و کود مرغی بیشترین درصد پروتئین ماده خشک خیار در تیمار 4 تن در هکتار کود مرغی و 6 تن در هکتار ورمی­کمپوست (42/58 درصد) حاصل شد. استفاده هم­زمان 8 تن در هکتار کود مرغی و مصرف سطوح مختلف ورمی­کمپوست درصد پروتئین ماده خشک را کاهش داد. اثر عمق آب آبیاری، کود مرغی و ورمی­کمپوست و اثرات متقابل آن­ها در سطح احتمال 1 و 5 درصد بر مقادیر کلروفیل a و b تأثیرگذار بود. با کاهش عمق آب آبیاری مقادیر کلروفیل a و b کاهش یافت. بیشترین مقدار کلروفیل a (63/0 میلی­گرم بر گرم وزن تر) و کلروفیل b (36/0 میلی­گرم بر گرم وزن تر) از تیمار 100 درصد نیاز آبی گیاه به­دست آمد اما از این نظر با تیمار 75 درصد نیاز آبی تفاوت معنی­دار نداشت. اثر متقابل ورمی­کمپوست و کود مرغی نشان داد استفاده 4 تن در هکتار کود مرغی و 6 تن در هکتار ورمی­کمپوست بیشترین تأثیر را بر مقادیر کلروفیل داشت. با توجه به نتایج به­دست آمده می­توان مقدار آب داده شده به گیاه را به  مقدار 75 درصد نیاز‌آبی‌گیاه کاهش داد و با مدیریت مناسب می­توان بدون کاهش معنی­دار عملکرد محصول، مقدار آب کمتری مصرف نمود. اثرات متقابل ورمی­کمپوست و کود مرغی نشان داد در استفاده 6 تن در هکتار ورمی­کمپوست برای جلوگیری از کاهش عملکرد و اجزای آن بایستی مصرف کود مرغی تا 4 تن در هکتار کاهش یابد؛ اما زمانی­که سطوح بیشتر ورمی­کمپوست (9 تن در هکتار) استفاده شود، مصرف کود مرغی باید تا 2 تن در هکتار کاهش یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Combined Use of Vermicompost and Poultry Manure on the Growth and Yield of Cucumber Plants in Different Conditions of Deficit Irrigation

نویسندگان [English]

  • M. Behdarnejad
  • H. Piri
  • M. Delbari
Department of Water Engineering, College of Water and Soil, University of Zabol, Zabol, Iran
چکیده [English]

Introduction
In sustainable farming systems, the use of organic fertilizers is of particular importance in increasing crop production and maintaining sustainable soil fertility. Nowadays, the consumption of organic foods is introduced to consumers as an alternative. The result of the application of chemical products is the crisis of environmental pollution, soil and water resources, and the health risk to human society. Nowadays, in order to reduce the effects of misuse of chemical inputs, chemical fertilizers can be replaced with organic biological fertilizers, including animal manure, compost, and green manure. In this regard, chicken manure has a positive effect on the physical, chemical, and biological characteristics of the soil, and due to its richness in uric acid, the nitrogen contained in it is used by the plant much faster than the nitrogen of other organic fertilizers. Vermicompost is considered a good source of soil fertility due to its organic materials. Organic matter in the soil improves the permeability and drainage of the soil and also prevents excessive dryness of the soil by maintaining sufficient moisture. Despite the fact that vermicompost can be used as a fertilizer in organic farming, high levels of this fertilizer may cause salinity effects in the plant, which affects the growth and development of the plant and even it can cause the death of cucumber as one of the crops sensitive to soil and water salinity. The cucumber (Cucumis sativus L.) is one of the important vegetables that can be produced in a greenhouse all year round. Fresh consumption of cucumber throughout the year has increased its production. The development of technology and the short growth period of this product has made it possible to grow it in most climate zones. Therefore, in this research, the effects of different levels of water deficit with the simultaneous application of vermicompost and chicken manure on cucumber plants in the Behbahan region have been investigated.
Materials and Methods
In this study, different levels of irrigation water, vermicompost, and poultry manure on ground cucumber were investigated. The experiment was performed in the form of split plots based on completely randomized design and the form of stacks. Treatments included three levels of poultry manure (2, 4 and 8 ton ha-1), three levels of vermicompost (3, 6 and 9 ton ha-1) and three levels of water stress (100, 75 and 50% of plant water requirement). Both vermicompost and poultry manure were applied to the soil before planting. Harvest was done every three days. Fruit weight, diameter and length, plant length, the protein of the dry matter of the fruit percentage, and leaf chlorophyll in each plot were carefully measured. Also, the yield and water productivity at the end of the season were calculated.
Water productivity
 Referring to the yield to irrigation water ratio, is obtained by the following relation (Payero et al., 2009):
WP=Y/IR                                                                                                                               (1)
In this equation, WP represents water productivity (kg/m3), Y denotes the yield (kg/ha), and IR shows the amount of irrigation water (m3/ha).
Statistical analysis
The analysis of variance for the results obtained from different treatments was conducted using SAS software (SAS 9.1, SAS Institute, Cary, NC, USA). The mean values of the main factors and interactive effects were compared using the Duncan method at the 1% and 5% levels of significance.
Results and Discussion
The results showed that irrigation, poultry manure and vermicompost had a significant effect on the measured parameters at the level of one and five percent probability. Reduction of water consumption reduced yield and yield components, but in this regard, no significant difference was observed between 100% and 75% of water requirement. The highest yield was obtained in the treatment of 100% of plant water requirement and consumption of 4 ton ha-1 of poultry manure and 6 ton ha-1 of vermicompost, in this regard, no significant difference was observed with the treatment of 75% of water requirement. According to the results obtained from this study, it can be said that there is no significant difference in terms of yield between treatments of 75 and 100% of plant water requirement. Therefore, the amount of water given to the plant can be reduced to 75% of the plant water requirement, and with proper management, less water can be consumed without a significant reduction in crop yield. Examining the effects of irrigation water on the amount of the protein of the dry matter of the fruit showed that the highest amount of the protein of the dry matter of the fruit (56.31%) was obtained in the treatment of 75% of the water requirement and the protein of the dry matter of the fruit was less in other treatments. The interaction effect of vermicompost and poultry manure resulted in the highest percentage of cucumber protein at a treatment of 4 tons ha-1 of poultry manure and 6 tons ha-1 of vermicompost (58.42%). However, when the simultaneous use of 8 tons ha-1 of poultry manure and different levels of vermicompost was employed, the percentage of protein in the fruit's dry matter decreased. The combination of drought stress, poultry manure, and vermicompost, along with their interaction effects, significantly influenced the chlorophyll a and b values at both the 1% and 5% probability levels. As the depth of irrigation water decreased, the amounts of chlorophyll a and b also decreased. The treatment with 100% water requirement of the plant showed the highest amounts of chlorophyll a (0.63 mg/g fresh weight) and chlorophyll b (0.36 mg/g fresh weight). However, no significant difference was observed compared to the 75% treatment. Regarding the interactions between vermicompost and poultry manure, it was found that when using 6 tons ha-1 of vermicompost to reduce yield and its components, the use of poultry manure should be reduced to 4 tons ha-1. On the other hand, when higher levels of vermicompost (9 tons ha-1) are used, the application of poultry manure should be reduced to 2 tons ha-1.
Result
According to the results obtained from this research, it can be said that there is no significant difference in performance between the treatments of providing 75% and 100% of the water requirement of the plant, therefore, the amount of water given to the plant can be reduced to the amount of 75% of the water requirement of the plant. With proper management, less water can be consumed without significantly reducing the yield of the product.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Fertilizer management
  • Protein
  • Water productivity
  • Yield
  1. Abbat, P.E., Dardanelli, J.L., Canatarero, M.G. Melchiori, M., & Suero, E. (2004). Climate and water availability effects on water use efficiency in wheat. Crop Scince, 44, 474-483.
  2. Abduli, M.A., Amiri, L., Madadian, E., Gitipour, S., & Sedighian, S. (2013). Efficiency of vermicompost on quantitative and qualitative growth of tomato plants. International Journal of Environmental Research, 7, 467-472. https://doi.org/22059/IJER.2013.625.
  3. Adediran, JA., Taiwo, LB., Akande, MO., Sobulo, RA., & Idowu, OJ. (2004). Application of organic and in-ganic fertilizer for sustainable maize and cowpea yields in Nigeria. Journal of Plant Nutrition, 27, 1163-1181.
  4. Afshar, R.K., Chaichi, M.R., Assareh, M.H., Hashemi, M., & Liaghat, A. (2014). Interactive effect of deficit irrigation and soil organic amendments on seed yield and flavonolignan production of milk thistle (Silybum marianum Gaertn.). Industrial Crops and Products, 58, 166-172.
  5. Ahmadpour, R., Armand, N., & Hosseinzadeh, S.R. (2016). Effect of vermicompost extract on germination characteristics of chickpea (Cicer arietinum) under salinity stress. Seed Research, 2(2), 123-135.
  6. Ahmed, M.E., El-Kader, N.I.A & El-Kader Derbala, A.A. (2009). Effect of irrigation frequency and potassium source on the productivity, quality and storability of garlic. Journal of Basic and Applied Sciences, 3(4), 4490-4497.
  7. Alfonse, M., & Saad, E.M. (2000). Growing greenhouse cucumber in farmyard and chicken manure media in combination with foliar application of zinc, manganese and boron. Egyptian Journal of Horticulture, 27(3), 315-336.
  8. Amoo Aghaei, R., & Baqaei, M. (2013). Effect of concentration-dependent vermicompost and its extract on seed germination and black seed vegetative growth. Plant Research, 27(4), 691-702. (In Persian with English abstract). http://doi.org/20.1001.1.23832592.1393.27.4.16.0
  9. Anwar, M., Patra, DD., Chand, S., Alpesh, K., Naqvi, AA., & Khanuja, SPS. (2005). Effect of organic manures and inorganic fertilizer on growth, herb and oil yield, nutrient accumulation, and oil quality of French basil. Communications in Soil Science and Plant Analysis, 36(13), 1737-1746.
  10. Arancon, N.Q., Edwards, C.A., Bierman, P., Welch, C., & Metzeger, J.D. (2004). Influences of vermicomposts on field strawberries: 1.Effects on growth and yields. Bioresource Technology, 93, 145-153.
  11. Arguello, J.A., Ledesma, A., Nunez, S.B., Rodriguez, C.H., & Goldfarb, M.D. (2006). Vermicompost effects on bulbing dynamics, nonstructural carbohydrate content, yield and quality of Rosado paraguayo garlic bulbs. Horticultural Science, 41(3), 589-592.
  12. Arnon, N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23, 112-121.
  13. Atiyeh, R.M., Arancon, N., Edwards, C., & Metzger, J.D. (2001). The influence of earthworm processed pig manure on the growth and productivity of marigolds. Bioresource Technology, 81(2), 103-108.
  14. Atiyeh, M., Edwards, C.A., Subler, S., & Metzger, J.D. (2002). Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresource Technology, 78(1), 11-20.
  15. Azarmi, , TorabiGiglou, M,. & Hajiegharari, B. (2009).The effect of sheep-manure vermicompost on quantitativeand qualitative properties of cucumber (Cucumis sativus L.) grown in the greenhouse. African Journal of Biotechnology, 8(19), 4953-4957.
  16. Babaei, , Amini-Dehghi, M., Modares Sanavi, A.M., & Jabari, M. (2010). Water deficit effect on morphology, prolin content and thymol percentage of Thyme (Thymus vulgaris L.). Iranian Journal of Medicinal and Aromatic Plants Research, 26(2), 239-251. (In Persian with English abstract)
  17. Bayoumi, Y., Eid, M., & Metwali, E.M. (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Biotechnology, 7, 2341-2352.
  18. Beyk Khurmizi, A.,Ganjeali, A., Abrishamchi, P., & Parsa, M. (2010). The effect of vermicompost on salt tolerance of bean seedlings (Phaseolus vulgaris). Agroecology 23:474-485.
  19. Chaves, MM .(1999). Effects of water deficits on carbon assimilation. Experimental Botany 42: 1-16.
  20. Chiluvuru, , Tartte, V., & Chandra, M. (2009). Plant bioassay for assessing the effects of vermicompost on growth and yield of and two important medicinal plants. J. D. S. A. 4: 160- 164.
  21. Dionne, J., Tweddell, H.A., & Avis, T.J. (2012). Effect of non-aerated compost teas on dampingoff pathogens of tomato. Canadian Journal Plant Pathology, 34(1), 51–57.
  22. Dubey, S. (1999). Protein synthesis by plants under stressful conditions. Handbook of Plant and Crop Stress2: 365-397.
  23. Ebrahimi, , Asadi, G., & Niemsdorff, P.V.F. (2019). A field study on the effect of organic soil conditioners with different placements on dry matter and yield of tomato (Lycopersicon esculentum L.). International Journal of  Recycling of Organic Waste in Agriculture, 8(1), 59-66. https://doi.org/10.1007/s40093-018-0228-4.
  24. Eghball, , Wienhold, B., & Gilley, J. (2001). Comprehensive manure management for improved nutrient utilization and environment quality. Soil and Water Conservation Research, 1, 128-135.
  25. Eidi, , Eidi, M., Oryan, S., & Esmaeili, A. (2004). Effect of garlic (Allium sativum) extract on levels of urea and uric acid in normal and streptozotocin-diabetic rats. Iranian Journal of Pharmaceutical Research, 3, 52-52. (In Persian with English abstract)
  26. El-Mageed, A.A., & Semida, W.M. (2015). Effect of deficit irrigation and growing seasons on plant water status, fruit yield and water use efficiency of squash under saline soil. Scintia Horticulturae, 186, 89-100. https://doi.org/10.1016/j.scienta.2015.02.013.
  27. Fallahi, (2009). Effects of biofertilizers and chemical fertilizers on quantity and quality characterize of Chamomile (Matricaria chamomilla L.) as a medicinal plant. M.Sc. Thesis Fac. Agric. Ferdowsi Universuty of Mashhad, Iran. (In Persian with English abstract)
  28. Gamity, , Watts, DG., Sullivan, CY., & Gilley, JR. (1983). Moisture deficits and grain-sorghum performance vapotranspiration yield relationships. Agronomy, 74, 815-820.
  29. Ghaderi, , Hosseini, M., & Keramati, L. (2010). Effect of organic compost fertilizer on growth characteristics of cucumber, tomato, cabbage and lettuce in greenhouse environment. Iranian Agricultural Sciences, 69, 41-60. (In Persian with English abstract)
  30. Ghorbani, , Kouchaki, A., Asadi, Q., & Jahan, M. (2008). Investigation of the effect of application of different organic fertilizers and foliar application of their extracts on the production and shelf life of tomatoes in storage in ecological agricultural systems. Iranian Agricultural Research, 6(1), 111-116. (In Persian with English abstract)
  31. Ghosh, PK., Ajay, KK., Bandyopadhyay, MC., Manna, KG., Mandal, AK & Hati, KM. (2004). Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer- NPK on three cropping system in vertisols of semi-arid tropics. Dry matter yield, nodulation, chlorophyll content and enzyme activity. Tech., 95, 85-93.
  32. Gorgini Shabankareh, H., & Khorasaninejad, S. (2016). The effect of sodium nitroprusside on some physiological and biochemical characteristics of safflower under low irrigation regimes. Crop production Research, 24(3), 55-70. (In Persian with English abstract)
  33. Hoekstra, , Golovia, A., & Buitink, J.(2001) . Mechanisms of plant desiccation tolerance. Tr. P. Sc., 6, 431-438.
  34. Hosseinzadeh, R., Amiri, H., & Ismaili, A. (2016). Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica, 54(1), 87-92.
  35. Hussain, , Abbasi, T., & Abbasi, S.A. (2015). Vermicomposting eliminates the toxicity of Lantana (Lantana camara) and turns it into a plant friendly organic fertilizer. Journal Hazard Mater, 298, 46-57. http://doi.org/10.1016/j.jhazmat.2015.04.073.
  36. Isitekhale, H.E., & Osemwota, I.O. (2014). Poultry manure and nitrogen-phosphorus- potassium fertilizer application and their residual effects on soil physical properties in two distinct ecological zones of central southern Nigeria. Communications in Soil Science and Plant Analysis, 45(21), 2721-2733. https://doi.org/10.1080/00103624. 2013.813529.
  37. Ievinsh, (2011). Vermicompost treatment differentially affects seed germination, seedling growth and physiological status of vegetable crop species. Plant Growth Regulation, 65(1), 169-181. https://doi.org/10.1007/s10725-011-9586-x.
  38. Kareem, , Jawando, O.B., Eifediyi, E.K., Bello, W.B., & Oladosu, Y. (2017). Improvement of growth and yield of maize (Zea mays L.) by poultry manure, maize variety and plant population. Agronomical Research in Moldavia, 50(4), 51-64. https://doi.org/10.1515/CERCE-2017-0035.
  39. Kashem, , Sarker, A., Hossain, I., & Islam, S. (2015). Comparison of the effect of vermicompost and inorganic fertilizer on vegetable growth and fruit production of tomato (Solanum lycopersicum L.). Soil Science, 5, 53-65. https://doi.org/10.4236/ojss.2015.52006.
  40. Kim, Y., Ahn, Y.O., Kim, S.H., Kim, Y.H., & Lee, H.S.(2010). The sweet potato IbMYB1 gene as a potential visible marker for sweetpotato intragenic vector system. Physiology Plant, 139, 229-240.
  41. Liue, , Savic, S., Jensen, C.R., Shahnazari, A., Jacobsen, S. & Andersen, M N. (2006).Water relations and yield of lysimeter-grown strawberries under limited irrigation. Scientia Horticulture, 111, 128-132. https://doi.org/10.1016/J.SCIENTA.2006.10.006.
  42. Maleksaidi, , Rezaimoghdam, K., & Ajili, A. (2010). Knowledge of experts Jahad-e keshavarzi Fars province, in the fields of organic farming. Iranian Agricultural Extension and Education Journal, 6(2), 49-62. (In Persian with English abstract)
  43. Manivaannan, P., Abdul Jaleel, C., Sanka, B., Kishorekumar, A., Somasundaram, R., & Panneerselvam, R. (2007). Growth biochemical modification and proline metabolism in Helianthus annus as induced by drought stress, Colloids and Surfaced B. Biointerfaces, 59, 141-149.
  44. Mao, , Liu, M., Wang, X., Liu, C., Hou, Z., & Shi, J. (2003). Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain. Agriculture water Management, 61(3), 219-228. https://doi.org/ 10.1016/S0378-3774(03)00022-2.
  45. Mirsohail, , & Gholami, M.(2008). Vermicompost of cattle manure and how to produce it. Olive Publications, 186 pages. (In Persian with English abstract)
  46. Mirzaei Takhtagahi, H., Qamarnia, H., & Farmani Fard, M. (2017). Effect of vermicompost and irrigation with contaminated water on yield and yield components of tomato and Okra. Water Research in Agriculture, 32(4), 556-565. (In Persian with English abstract)
  47. Movahedi, , Heidari-Nasserabad, B., Hashemi-Ana, S.K., & Ranjbar, F. (2012). Zoning of climatic areas of Khuzestan province. Geographical Space, 12(30), 64-73. (In Persian with English abstract)
  48. Muhammad, , & Hussain, F. (2010). Effect of NaCl salinity on the germination and seedling growth of some medicinal plants.  Pak Journal Botany, 42(2), 889-897.
  49. Nayyar, , & Gupta, D .(2006). Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environmental and Experimental Botany, 58, 106113. https://doi.org/10.1016/j.envexpbot.2005.06.021
  50. Norozi, , Khodadadi, M., Gholchin, A., & Akbarinia, A. (2010). Effect of manure poultry different level on the quantitative and qualitative Iranian musk melon. Journal of Horticultural Science, 2(2), 245-250.
  51. Paris, , Matteo, G.D., Tarchi, M., Tosi, L., Spaccino, L., & Lauteri, M. (2018). Precision subsurface drip irrigation increases yield while sustaining water use efficiency in Mediterranean poplar bioenergy plantations. Forest Ecology and Management, 409, 749–756.
  52. Payero, O., Melvin, S.R., Irmak, S., & Tarkalson, D. (2009). Yield response of corn to deficit irrigation in a semiarid climate. Agriculture Water Management, 84, 101–112.
  53. Pelah, , Wang, W., Altman, A., Shoseyov, O., & Bartels, D. (1997). Differential accumulation of water stress‐related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Plant Physiology,99(1), 153-159.
  54. Piri, , & Bameri, A. (2019). Interaction of water and organic and chemical fertilizers on water productivity of garlic in the drain of Sistan plain. Water Research in Agriculture, 33(2), 250-263. (In Persian with English abstract). https://doi.org/10.22092/jwra.2019.119741.
  55. Piri, , & Rashki, P. (2019). Effect of interaction of vermicompost and compost tea on greenhouse cucumber under water stress. Water and Irrigation Management, 9(1), 55-68. (In Persian with English abstract). https://doi.org/10.22059/JWIM.2019.283562.686.
  56. Rezaei nejhad, y., & Afiauni, M. (2000). The effects of organic fertilizers on some chemical soil characteristics and elemental absorption and yield of maize crop. Agricultural and Natural Science Journal, 4(4), 19-29. (In Persian with English abstract).
  57. Rezvani Moghaddam, P., Sabouri, A., Mohammadabadi, A.A., & Moradi, R. (2013). The effect of chemical fertilizers, cattle and municipal waste compost on yield, yield components and oil content of three sesame genotypes in Mashhad. Iranian Agricultural Research, 11(2), 241-250. (In Persian with English abstract)
  58. Sahin, , Ors, S., Kiziloglu, F.M., & Kuslu, Y. (2014). Evaluation of water use and yield responses of drip-irrigated sugar beet with different irrigation techniques. Chilean Journal of Agricultural Research, 74(3), 302-310. http://dx.doi.org/10.4067/S0718-58392014000300008.
  59. Sahni, , Sarma, B., Singh, D., Singh, H., & Singh, K. 2008. Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii. Crop Protection, 27, 369-376. http://doi.org/10.1016/j.cropro.2007.07.001.
  60. Shariati, , Ali Alikhani, H., Pourbabaee, A. (2014). Effect of nanoprosil-1 (lus-1) in combination with vermicompost for production of pseudomonas fluorescents inoculants on the growth and yields of maize. Agricultural Advances, 303, 81-87.
  61. Sreevalli, , Baskaran, K., chandra shekara, R., Kuikkarni, R., Sushil, H., Samresh, D., Kukre, J., Ashok, A., Sharmr Singh, K., Srikant, S., & Rakesh, T. (2001). Preliminary obserration on the effect of irrigation frequency and genotypes on yield and alkaloid concentration in petriwinkle. Journal of Medicinal and Aromatic Plant Science, 22, 356-358.
  62. Stone, L., & Gifford, D.J. (1997). Structural and biochemical changes in loblolly pine (Pinus taeda L.) seeds during germination and early seedling growth: I. Storage protein reserves. International Journal of Plant Science, 158, 727–737.
  63. Taiz, , & Ziger, E. (1991). Plant Physiology. Benjamin Publication. p. 346-356.
  64. Tasdighi, , Salehi, A., Movahedi Dehnavi, M., & Behzadi, Y. (2014). Investigating yield, yield components and the amount of German chamomile essential oil with the use of vermicompost and surfaces different irrigation. Agricultural Knowledge and Sustainable Production, 25(3), 78-62.
  65. Terakado, , Tadakatsu, Y., & Shinsuke, F. (2006). Shoot-applied polyamines suppress nodule formation in soybean (Glycine max), Plant Physiology, 163, 497–505. http://doi.org/10.1016/j.jplph.2005.05.007.
  66. Theunissen, , Ndakidemi, A., & Laubscher, C.P. (2010). Potential of vermicompost produced from plant west on growth and nutrient statue in vegetable production. International Journal of Physical Sciences, 5(13), 964-973.
  67. Tuzel, , Yagmur, B., & Gumus, M. (2003). Organic tomato production under greenhouse conditions. Acta Horticultura, 4, 775-780. http://doi.org/10.17660/ActaHortic.2003.614.114.
  68. Waldrip, M., He, Z., & Erich, M.S. (2011). Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biology and Fertility of Soils, 47, 407-418. http://doi.org/10.1007/s00374-011-0546-4.
  69. Walker, J., & Pilar, M. (2008). The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresource Technology, 99, 396-403. http://doi.org/10.1016/j.biortech.2006.12.006.
  70. Wamba, F., Taffouo, V. D., Youmbi, E., Ngwene, B., & Amougou, A. (2012). Effects of organic and inorganic nutrient sources on the growth, total chlorophyll and yield of three Bambara groundnut landraces in the coastal region of Cameroon. Journal of Agronomy, 11(2), 31-42. http://doi.org/10.3923/ja.2012.31.42.
  71. Wang, , Kang, Y., Liu, P., & Hou, Y. (2007). Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agricultural Water Management, 88, 34-42.
  72. Wang, , Li, J., Cheng, M., Zhang, F., Wang, X., Fan, J., Wu, L., Fang, D., Zou, H., & Xiang, Y. (2019). Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber. Scintia Horticulturae, 243, 357-366.
  73. Wei, , Liang, Y., Yamada, S., Zeng, X., Zhou, M., Huang, M., & Wu, Y. (2009). Relation of soil microbial diversity to tomato yield and quality under different soil water conditions and fertilizations. Chin Journal Plant Ecology, 33(3), 580–586. (In Chinese with English abstract). http://doi.org/10.1371/journal.pone.0245626.
  74. Xu, , & Mou, B. (2016). Vermicompost affects soil properties and spinach growth, physiology, and nutritional value. HortScience,51(7), 847-855. http://doi.org/10.21273/HORTSCI.51.7.847.
  75. Yazdan Panah, A., & Motalabi Fard, R. (2016). Effects of poultry manure and potassium fertilizer on yield and uptake of nitrogen, phosphorus, potassium, zinc and copper in potatoes. Applied Soil Research, 4(2), 60-71. (In Persian with English abstract)
  76. Yang, , Zhao, F., Chang, Q., Li, T., & Li, F. (2015). Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes. Agriculture Water Managent, 160, 98-105. http://doi.org/10.1016/j.agwat.2015.07.002.
  77. Zafari, , Rokhzadi, A., & Talebi, R. (2019). The effect of organic and chemical fertilizers on growth and yield of chickpea cultivars under dryland conditions. Crop Physiology, 11(42), 85-103. (In Persian with English abstract). http://doi.org/20.1001.1.76712423.1395.11.42.3.8.
  78. Zaller, G. (2007). Vermicompost as a substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Scientia Horticulturae, 112, 191-199. http://doi.org/10.1016/j.scienta.2006.12.023.
  79. Zhao, , Luo, X.Q., Chen Zhang ,X.J., & Zhang, W.L. (2010). Greenhouse tomato-cucumber yield and soil N leaching as affected by reducing N rate and adding manure: A case study in the Yellow River Irrigation Region China. Nutrient Cycling in Agroecosystems, 94(2), 221-235. http://doi.org/10.1007/s10705-012-9535-8.

 

 

CAPTCHA Image